\(\int \frac {\cos ^2(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^3} \, dx\) [317]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [C] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 61 \[ \int \frac {\cos ^2(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {x}{a^3}-\frac {7 \cos (c+d x)}{3 a^3 d (1+\sin (c+d x))}+\frac {2 \cos (c+d x)}{3 a d (a+a \sin (c+d x))^2} \]

[Out]

-x/a^3-7/3*cos(d*x+c)/a^3/d/(1+sin(d*x+c))+2/3*cos(d*x+c)/a/d/(a+a*sin(d*x+c))^2

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 61, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {2936, 2814, 2727} \[ \int \frac {\cos ^2(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {7 \cos (c+d x)}{3 a^3 d (\sin (c+d x)+1)}-\frac {x}{a^3}+\frac {2 \cos (c+d x)}{3 a d (a \sin (c+d x)+a)^2} \]

[In]

Int[(Cos[c + d*x]^2*Sin[c + d*x])/(a + a*Sin[c + d*x])^3,x]

[Out]

-(x/a^3) - (7*Cos[c + d*x])/(3*a^3*d*(1 + Sin[c + d*x])) + (2*Cos[c + d*x])/(3*a*d*(a + a*Sin[c + d*x])^2)

Rule 2727

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[-Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2814

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*(x/d)
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2936

Int[cos[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_
)]), x_Symbol] :> Simp[2*(b*c - a*d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(2*m + 3))), x] + Dist[
1/(b^3*(2*m + 3)), Int[(a + b*Sin[e + f*x])^(m + 2)*(b*c + 2*a*d*(m + 1) - b*d*(2*m + 3)*Sin[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -3/2]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \cos (c+d x)}{3 a d (a+a \sin (c+d x))^2}-\frac {\int \frac {-4 a+3 a \sin (c+d x)}{a+a \sin (c+d x)} \, dx}{3 a^3} \\ & = -\frac {x}{a^3}+\frac {2 \cos (c+d x)}{3 a d (a+a \sin (c+d x))^2}+\frac {7 \int \frac {1}{a+a \sin (c+d x)} \, dx}{3 a^2} \\ & = -\frac {x}{a^3}+\frac {2 \cos (c+d x)}{3 a d (a+a \sin (c+d x))^2}-\frac {7 \cos (c+d x)}{3 d \left (a^3+a^3 \sin (c+d x)\right )} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(145\) vs. \(2(61)=122\).

Time = 0.35 (sec) , antiderivative size = 145, normalized size of antiderivative = 2.38 \[ \int \frac {\cos ^2(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {180 d x \cos \left (\frac {d x}{2}\right )-351 \cos \left (c+\frac {d x}{2}\right )+277 \cos \left (c+\frac {3 d x}{2}\right )-60 d x \cos \left (2 c+\frac {3 d x}{2}\right )-471 \sin \left (\frac {d x}{2}\right )+180 d x \sin \left (c+\frac {d x}{2}\right )+60 d x \sin \left (c+\frac {3 d x}{2}\right )+3 \sin \left (2 c+\frac {3 d x}{2}\right )}{120 a^3 d \left (\cos \left (\frac {c}{2}\right )+\sin \left (\frac {c}{2}\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^3} \]

[In]

Integrate[(Cos[c + d*x]^2*Sin[c + d*x])/(a + a*Sin[c + d*x])^3,x]

[Out]

-1/120*(180*d*x*Cos[(d*x)/2] - 351*Cos[c + (d*x)/2] + 277*Cos[c + (3*d*x)/2] - 60*d*x*Cos[2*c + (3*d*x)/2] - 4
71*Sin[(d*x)/2] + 180*d*x*Sin[c + (d*x)/2] + 60*d*x*Sin[c + (3*d*x)/2] + 3*Sin[2*c + (3*d*x)/2])/(a^3*d*(Cos[c
/2] + Sin[c/2])*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3)

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.32 (sec) , antiderivative size = 55, normalized size of antiderivative = 0.90

method result size
risch \(-\frac {x}{a^{3}}-\frac {2 \left (12 i {\mathrm e}^{i \left (d x +c \right )}+9 \,{\mathrm e}^{2 i \left (d x +c \right )}-7\right )}{3 d \,a^{3} \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )^{3}}\) \(55\)
derivativedivides \(\frac {-2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {8}{3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {4}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {2}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1}}{d \,a^{3}}\) \(67\)
default \(\frac {-2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {8}{3 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {4}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {2}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1}}{d \,a^{3}}\) \(67\)
parallelrisch \(\frac {-3 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) d x +\left (-9 d x -6\right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-9 d x -24\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-3 d x -10}{3 d \,a^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}\) \(77\)
norman \(\frac {-\frac {2 \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {12 \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {56 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {x}{a}-\frac {5 x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{a}-\frac {13 x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {25 x \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {38 x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {46 x \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {46 x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {38 x \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {25 x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {13 x \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {5 x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {x \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}-\frac {10}{3 a d}-\frac {76 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {152 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d a}-\frac {44 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{3 d a}-\frac {80 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {94 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d a}-\frac {220 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d a}-\frac {82 \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d a}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3} a^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}\) \(421\)

[In]

int(cos(d*x+c)^2*sin(d*x+c)/(a+a*sin(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

-x/a^3-2/3*(12*I*exp(I*(d*x+c))+9*exp(2*I*(d*x+c))-7)/d/a^3/(exp(I*(d*x+c))+I)^3

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 124 vs. \(2 (57) = 114\).

Time = 0.27 (sec) , antiderivative size = 124, normalized size of antiderivative = 2.03 \[ \int \frac {\cos ^2(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {{\left (3 \, d x - 7\right )} \cos \left (d x + c\right )^{2} - 6 \, d x - {\left (3 \, d x + 5\right )} \cos \left (d x + c\right ) - {\left (6 \, d x + {\left (3 \, d x + 7\right )} \cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) + 2}{3 \, {\left (a^{3} d \cos \left (d x + c\right )^{2} - a^{3} d \cos \left (d x + c\right ) - 2 \, a^{3} d - {\left (a^{3} d \cos \left (d x + c\right ) + 2 \, a^{3} d\right )} \sin \left (d x + c\right )\right )}} \]

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)/(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/3*((3*d*x - 7)*cos(d*x + c)^2 - 6*d*x - (3*d*x + 5)*cos(d*x + c) - (6*d*x + (3*d*x + 7)*cos(d*x + c) + 2)*s
in(d*x + c) + 2)/(a^3*d*cos(d*x + c)^2 - a^3*d*cos(d*x + c) - 2*a^3*d - (a^3*d*cos(d*x + c) + 2*a^3*d)*sin(d*x
 + c))

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 529 vs. \(2 (53) = 106\).

Time = 7.54 (sec) , antiderivative size = 529, normalized size of antiderivative = 8.67 \[ \int \frac {\cos ^2(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^3} \, dx=\begin {cases} - \frac {3 d x \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{3 a^{3} d \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{3} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{3} d \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} + 3 a^{3} d} - \frac {9 d x \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{3 a^{3} d \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{3} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{3} d \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} + 3 a^{3} d} - \frac {9 d x \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{3 a^{3} d \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{3} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{3} d \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} + 3 a^{3} d} - \frac {3 d x}{3 a^{3} d \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{3} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{3} d \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} + 3 a^{3} d} - \frac {6 \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{3 a^{3} d \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{3} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{3} d \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} + 3 a^{3} d} - \frac {24 \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{3 a^{3} d \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{3} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{3} d \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} + 3 a^{3} d} - \frac {10}{3 a^{3} d \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{3} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{3} d \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )} + 3 a^{3} d} & \text {for}\: d \neq 0 \\\frac {x \sin {\left (c \right )} \cos ^{2}{\left (c \right )}}{\left (a \sin {\left (c \right )} + a\right )^{3}} & \text {otherwise} \end {cases} \]

[In]

integrate(cos(d*x+c)**2*sin(d*x+c)/(a+a*sin(d*x+c))**3,x)

[Out]

Piecewise((-3*d*x*tan(c/2 + d*x/2)**3/(3*a**3*d*tan(c/2 + d*x/2)**3 + 9*a**3*d*tan(c/2 + d*x/2)**2 + 9*a**3*d*
tan(c/2 + d*x/2) + 3*a**3*d) - 9*d*x*tan(c/2 + d*x/2)**2/(3*a**3*d*tan(c/2 + d*x/2)**3 + 9*a**3*d*tan(c/2 + d*
x/2)**2 + 9*a**3*d*tan(c/2 + d*x/2) + 3*a**3*d) - 9*d*x*tan(c/2 + d*x/2)/(3*a**3*d*tan(c/2 + d*x/2)**3 + 9*a**
3*d*tan(c/2 + d*x/2)**2 + 9*a**3*d*tan(c/2 + d*x/2) + 3*a**3*d) - 3*d*x/(3*a**3*d*tan(c/2 + d*x/2)**3 + 9*a**3
*d*tan(c/2 + d*x/2)**2 + 9*a**3*d*tan(c/2 + d*x/2) + 3*a**3*d) - 6*tan(c/2 + d*x/2)**2/(3*a**3*d*tan(c/2 + d*x
/2)**3 + 9*a**3*d*tan(c/2 + d*x/2)**2 + 9*a**3*d*tan(c/2 + d*x/2) + 3*a**3*d) - 24*tan(c/2 + d*x/2)/(3*a**3*d*
tan(c/2 + d*x/2)**3 + 9*a**3*d*tan(c/2 + d*x/2)**2 + 9*a**3*d*tan(c/2 + d*x/2) + 3*a**3*d) - 10/(3*a**3*d*tan(
c/2 + d*x/2)**3 + 9*a**3*d*tan(c/2 + d*x/2)**2 + 9*a**3*d*tan(c/2 + d*x/2) + 3*a**3*d), Ne(d, 0)), (x*sin(c)*c
os(c)**2/(a*sin(c) + a)**3, True))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 142 vs. \(2 (57) = 114\).

Time = 0.28 (sec) , antiderivative size = 142, normalized size of antiderivative = 2.33 \[ \int \frac {\cos ^2(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {2 \, {\left (\frac {\frac {12 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {3 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 5}{a^{3} + \frac {3 \, a^{3} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {3 \, a^{3} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {a^{3} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}} + \frac {3 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{3}}\right )}}{3 \, d} \]

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)/(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

-2/3*((12*sin(d*x + c)/(cos(d*x + c) + 1) + 3*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 5)/(a^3 + 3*a^3*sin(d*x +
c)/(cos(d*x + c) + 1) + 3*a^3*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + a^3*sin(d*x + c)^3/(cos(d*x + c) + 1)^3) +
 3*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a^3)/d

Giac [A] (verification not implemented)

none

Time = 0.44 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.98 \[ \int \frac {\cos ^2(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {\frac {3 \, {\left (d x + c\right )}}{a^{3}} + \frac {2 \, {\left (3 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 12 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 5\right )}}{a^{3} {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}^{3}}}{3 \, d} \]

[In]

integrate(cos(d*x+c)^2*sin(d*x+c)/(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

-1/3*(3*(d*x + c)/a^3 + 2*(3*tan(1/2*d*x + 1/2*c)^2 + 12*tan(1/2*d*x + 1/2*c) + 5)/(a^3*(tan(1/2*d*x + 1/2*c)
+ 1)^3))/d

Mupad [B] (verification not implemented)

Time = 9.62 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.89 \[ \int \frac {\cos ^2(c+d x) \sin (c+d x)}{(a+a \sin (c+d x))^3} \, dx=-\frac {x}{a^3}-\frac {2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+8\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+\frac {10}{3}}{a^3\,d\,{\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )}^3} \]

[In]

int((cos(c + d*x)^2*sin(c + d*x))/(a + a*sin(c + d*x))^3,x)

[Out]

- x/a^3 - (8*tan(c/2 + (d*x)/2) + 2*tan(c/2 + (d*x)/2)^2 + 10/3)/(a^3*d*(tan(c/2 + (d*x)/2) + 1)^3)